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ABSTRACT

In coastal regions, the hydrodynamic environment is typically dominated by
both slowly varying currents and high frequency wind waves. The near-bottom fluid
motion of these wave and current flows is typically characterized by high fluid
shear. This high fluid shear leads to bedform development and results in an
enhanced energy dissipation experienced by the waves and current. Moreover, this
fluid shear can resuspend fine sediments and associated contaminants. Therefore,
characterization of the near-bottom wave-current interaction is extremely
important. Accordingly, several theoretical models have been advanced for
turbulent bottom boundary layers associated with combined wave and current flows
over a rough bed. Although these models differ, particularly in the sophistication
with which turbulence is modeled, they all share one common feature: the bottom
roughness is characterized by a single roughness length scale, k,. However, no
experimental data have been presented which accurately characterize the bottom
roughnesses for wave and current boundary layers such that this basic assumption
can be considered verified.

Therefore, an experimental study of wavecurrent interaction over a rippled bed
is completed using an existing 30-m-long wave flume which was modified to
accommodate a uniform current. The flume provides a test section of 17 m and a
still-water depth of 60 cm. To simulate ripples, the bed is covered by 1.5-cm-high
triangular bars placed at uniform intervals along the length of the flume.
Experiments are carried out with bars placed in 10-cm and 20-cm intervals. A
1200-GPM pump is used to generate uniform currents of .12 m/sec and .16 m/sec.
A programmable wavemaker is used to generate Stokes waves with wave periods of
2.24, 2.63, and 2.89 seconds and maximum amplitudes of 6 em. The roughness
experienced by the current is determined from velocity profiles obtained using laser
doppler velocimetry measurements. The roughness experienced by the waves is
determined from the friction factors obtained from measurements of wave
attenuation.

Roughness determinations for pure wave motion, pure current flow, and
combined wave-current flow over a rippled bed are compared. The roughnesses for
pure currents and for pure waves are shown to be the same only if determination of
pure wave roughness includes detailed analysis of the phase difference between
bottom horizontal orbital velocity and bottom shear stress. The roughnesses for
pure waves are also shown to be comparable to the roughnesses for waves in
combined wave-current flows. However, apparent roughness predictions of existing
wave-current interaction models underestimate the apparent roughness experienced
by the current. This difference is shown to be a result of a steady streaming or mass
transport which is imposed by the wave motion within the wave boundary layer of
the combined wave-current flow. To account for this wave-induced streaming, a
conceptual theoretical model is developed which includes the effects of a time-
varying eddy viscosity. By applying this model to experimental data, the bottom
roughness for pure current, pure wave, and combined wave-current boundary layer
flows is shown to be characterized by a single roughness length scale.

Since waves are more realistically represented in terms of a wave spectrum,
experiments are also carried out using spectral waves over a rippled bed. Wave
spectra with peak periods of 2.24 sec and rms amplitudes of 3 and 5 cm are
simulated by generating five wave components. Sidewall friction and wave-wave
interactions are measured for spectral experiments over a flat bottom. Using these
measurements, the sidewall friction and wave-wave interactions are accounted for
when determining wave attenuation due to bottom friction over a rippled bed.
Wave attenuation for each component is determined and used to establish a

-3-



representative friction factor. Using this friction factor in conjunction with an
equivalent monochromatic wave produces a roughness estimate in good agreement
with the roughness for strictly monochromatic waves. Thus, the concept of an
equivalent monochromatic wave for use in characterization of energy dissipation and
friction factor determination (Madsen et al., 1988) is experimentally verified. The
concept of an equivalent monochromatic wave is extended to the problem of spectral
wave-current interaction (Madsen, 1992) and shown to produce results in agreement
with the results for monochromatic wave—current interaction.

The research preser -d in this ‘eport was sponsored by the MIT Sea Grant
College Program under :ant numbper NA90-AA-D-SG424 from the Office of Sea
Grant, National Oceanic and Atmospheric Administration, U.S. Department of
Commerce, and represents the doctoral dissertation of the first author under the
supervision of the second author.
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